Journal of Organometallic Chemistry, 379 (1989) 59–65 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20226

Cp₂Ti^{IV}- und Cp₂Zr^{IV}-Komplexe mit Oxydiacetatliganden

Ulf Thewalt * und Thomas Güthner

Sektion für Röntgen- und Elektronenbeugung der Universität Ulm, Albert-Einstein-Allee 11, D-7900 Ulm (B.R.D.)

(Eingegangen den 3. Juli 1989)

Abstract

The reaction of Cp_2TiCl_2 with the disodium salt of oxydiacetic acid in the two phase system of $H_2O/CHCl_3$ gives the mononuclear penta-coordinate complex $Cp_2Ti(O(CH_2CO_2)_2)$ (1) or, if CH_2Cl_2 is present, the dinuclear tetra-coordinate complex $[Cp_2Ti(O(CH_2CO_2)_2)]_2 \cdot 2CH_2Cl_2$ (2). The analogous reaction starting with Cp_2ZrCl_2 gives only $Cp_2Zr(O(CH_2CO_2)_2)$ (3) which is isostructural with 1. The crystal structures of 1, 2 and 3 have been determined by X-ray diffraction.

Zusammenfassung

Bei der Umsetzung von Cp_2TiCl_2 mit dem Dinatriumsalz der Oxydiessigsäure im Zweiphasensystem $CHCl_3/H_2O$ entstehen der einkernige, fünffach koordinierte Komplex $Cp_2Ti(O(CH_2CO_2)_2)$ (1) sowie, in Anwesenheit von CH_2Cl_2 , der zweikernige, vierfach koordinierte Komplex $[Cp_2Ti(O(CH_2CO_2)_2)]_2 \cdot 2CH_2Cl_2$ (2). Die entsprechende Umsetzung mit Cp_2ZrCl_2 als Edukt liefert nur das mit 1 isostrukturelle $Cp_2Zr(O(CH_2CO_2)_2)$ (3). Die Strukturen der drei Verbindungen wurden durch Röntgenstrukturanalysen bestimmt.

Einführung

Die grosse Tendenz des Ti-Atoms, in Verbindungen mit der Cp₂Ti-Einheit Vierfachkoordination zu erreichen, zeigt sich in der Existenz mehrerer hundert Verbindungen des Typs Cp₂TiX₂ [1]. Sieht man von Spezies mit postulierter Struktur ab, so sind andererseits nur ganz wenige Verbindungen bekannt, bei denen die Koordinationszahl 5 belegt ist. Die Erhöhung der Koordinationszahl wurde durch den Einsatz der sterisch besonders geeigneten Liganden Dipicolinat [2] und Pyrazintetracarboxylat [3] erreicht. Bei Cp₂Zr^{IV}-Komplexen sind mehrere Fälle bekannt, in denen eine Fünffachkoordination – und gekoppelt damit – eine 18-Elektronenkonfiguration realisiert ist [4].

Im Rahmen unserer Untersuchungen über die Strukturchemie von Cp_2Ti^{IV} - und Cp_2Zr^{IV} -Komplexen interessierte uns die Frage, ob nicht auch Cp_2Ti^{IV} -Komplexe mit drei Ti-O-Bindungen darstellbar sind. Wir berichten in dieser Arbeit über Cp_2Ti^{IV} - und Cp_2Zr^{IV} -Komplexe mit dem für unsere Fragestellung "mass-geschneiderten" Oxydiacetatliganden.

Ergebnisse und Diskussion

Da die Oxydiacetatgruppe a priori als ein-, zwei- oder mehrzähniger Ligand gegenüber Metallzentren fungieren kann, ist mit der Existenz mehrerer Typen von Metallkomplexen mit diesem Ligand zu rechnen – zumindest auf dem Papier. Unsere Röntgenstrukturbestimmungen zeigen, daß er gegenüber dem Ti^{IV}-Zentrum der Cp₂Ti^{IV}-Gruppe sowohl als dreizähniger als auch als zweizähniger Ligand auftritt. Die entsprechenden in kristalliner Form isolierbaren Verbindungen, das gelbe Cp₂Ti(O(CH₂CO₂)₂) (1) und das orangerote [Cp₂Ti(O(CH₂CO₂)₂)]₂ · 2CH₂Cl₂ (2), besitzen die folgenden Strukturformeln:

Die Komplexe entstehen bei der Umsetzung von Cp_2TiCl_2 mit Dinatriumoxydiacetat im Zweiphasensystem $CHCl_3/H_2O$. Innerhalb einstündigen Rührens scheidet sich 1 als ein feinkristallines, gelbes Pulver in mässiger Ausbeute ab. Aus der filtrierten orangefarbenen Chloroformphase lässt sich durch Versetzen mit Hexan ein orangerotes, nach Aussage eines Röntgenpulverspektrums amorphes Produkt der ungefähren Zusammensetzung $[Cp_2Ti(O(CH_2CO_2)_2) \cdot 2H_2O]_x$, ausfällen. Kristallines 2 mit nahezu gleichem IR-Spektrum wie dieses amorphe Produkt konnte durch Überschichten der Chloroformphase mit Dichlormethan und einem Gemisch aus Hexan und Ether erhalten werden. Die Ähnlichkeit von Farbe und IR-Spektrum der orangefarbenen Produkte zeigt eine gleichartige Koordination der Ti^{IV}-Zentren in beiden Substanzen an. Die folgende Beobachtung deutet darauf hin, dass in 2 die thermodynamisch gegenüber 1 bevorzugte Molekülform vorliegt: In Kristallisationsansätzen, bei denen zunächst kristallines gelbes 1 entstanden war, verschwanden die Kriställchen von 1 weitgehend während mehrwöchigen Stehens, während sich parallel dazu langsam orangerote Kristalle von 2 bildeten.

Wird Cp_2ZrCl_2 mit Dinatriumoxydiacetat im Zweiphasensystem $CHCl_3/H_2O$ zur Reaktion gebracht, so erhält man ausschliesslich die pentakoordinierte, zu 1

Fig. 1. ORTEP-Darstellung von $Cp_2Ti(O(CH_2CO_2)_2)$ (1). $Cp_2Zr(O(CH_2CO_2)_2)$ (3) besitzt eine gleichartige Molekülstruktur.

isostrukturelle Verbindung 3 in hoher Ausbeute. Eine zu 2 analoge tetrakoordinierte Spezies konnten wir nicht nachweisen.

Ein Blick auf die Tabellen mit den Kristallparametern (Tabelle 3) und Atomkoordinaten (Tabellen 4 und 6) zeigt, dass 1 und 3 isomorph kristallisieren. Die Moleküle besitzen kristallographische Spiegelsymmetrie, wobei die Spiegelebene

Fig. 2. ORTEP-Darstellung des zentrosymmetrischen [Cp₂Ti(O(CH₂CO₂)₂)]₂-Moleküls in 2.

Atome	1 (M = Ti)	3(M = Zr)	
M-O(1)	2.100(9)	2.156(2)	
M-O(3)	2.205(9)	2.271(2)	
M-Z(10)	2.100	2.220	
M-Z(15)	2.088	2.227	
O(1)-C(1)	1.28(1)	1.287(4)	
O(2)–C(1)	1.21(1)	1.220(4)	
C(1)-C(2)	1.51(1)	1.516(5)	
C(2)-O(3)	1.40(1)	1.424(4)	
O(1)-M-O(1)	139.4(2)	136.3(1)	
O(1)-M-O(3)	69.7(2)	68.2(1)	
Z(10) - M - Z(15)	129.9	129.3	
M-O(1)-C(1)	127.2(9)	127.6(2)	
O(1)-C(1)-O(2)	126 (1)	125.1(3)	
O(1)-C(1)-C(2)	113(1)	114.7(3)	
O(2)-C(1)-C(2)	121 (1)	120.3(3)	
C(1)-C(2)-O(3)	108 (1)	107.3(3)	
C(2)-O(3)-C(2)	116(1)	115.7(2)	
M-O(3)-C(2)	120.5(7)	121.8(2)	

Bindungsabstände (Å) und -winkel (°) in 1 und 3 a

^{*a*} Z(n) sind die Zentren der C(n) enthaltenden Cp-Ringe.

jeweils durch das Metallatom und O(3), C(10) und C(15) verläuft (s. Fig. 1). Die Atome der Metall-Oxydiacetateinheiten sind nahezu coplanar (O(3) weist den grössten Abstand von der zugehörigen besten Ebene auf, 0.13 Å in 1, 0.07 Å in 3). Der Ti-O-Carboxylat-Abstand in 1 ist des erhöhten sterischen "crowding" wegen deutlich höher als in 2 (2.10(1) gegenüber 1.96(1) Å; s. Tabellen 1 und 2). Er stimmt ausgezeichnet mit dem entsprechenden Abstand in Titanocendipicolinat [2] überein (2.111(6) Å). Der 16-gliedrige, stark gefaltete Zentralring in 2 (s. Fig. 2) besitzt kristallographische Inversionssymmetrie. Die Atome O(1), O(2), C(1), C(2), O(3) und die Atome O(4), O(5), C(4), C(3), O(3) liegen jeweils in einer Ebene. Diese beiden Ebenen schneiden sich in O(3) unter einem Winkel von 116°.

Ti-O(1)	1.959(7)	O(1)Ti-O(4)	90.8(3)	
Ti-O(4)	1.970(7)	Z(10) - Ti - Z(15)	130.4	
Ti-Z(10)	2.067	Ti-O(1)-C(1)	141.4(7)	
Ti-Z(15)	2.066	O(1)-C(1)-O(2)	124.7(9)	
O(1) - C(1)	1.28(1)	O(1)-C(1)-C(2)	H12.8(9)	
O(2)-C(1)	1.22(1)	O(2)-C(1)-C(2)	122.5(9)	
C(1)–C(2)	1.51(1)	C(1)-C(2)-O(3)	114.9(9)	
C(2)-O(3)	1.42(1)	C(2) = O(3) = C(3)	115.0(8)	
O(3)–C(3)	1.43(1)	O(3) - C(3) - C(4)	114.3(9)	
C(3)-C(4)	1.52(1)	C(3) - C(4) - O(4)	117.4(9)	
C(4)-O(4)	1.28(1)	C(3)-C(4)-O(5)	116.6(9)	
C(4)-O(5)	1.23(1)	O(4) - C(4) - O(5)	126.0(9)	
		C(4)-O(4)-Ti	146.8(7)	

Bindungsabstände (Å) und -winkel (°) in 2^{a}

Tabelle 2

^{*a*} Z(n) sind die Zentren der C(n) enthaltenden Cp-Ringe.

Tabelle 1

Experimentelles

Darstellung von $Cp_2Ti(O(CH_2CO_2)_2)$ (1) und $[Cp_2Ti(O(CH_2CO_2)_2)]_2 + 2CH_2Cl_2$ (2)

Eine Lösung von 249 mg Cp₂TiCl₂ (1.00 mmol) in 10 ml CHCl₃ wurde mit einer Lösung von 178 mg Dinatriumoxydiacetat (1.00 mmol) in 10 ml Wasser etwa 1 h lang heftig gerührt. 1 schied sich dabei als gelbes Pulver ab. Ausbeute: 100 mg (32%). Aus der Chloroformlösung wurde durch Zusatz von 10 ml Hexan ein amorphes, orangerotes Pulver der angenäherten Zusammensetzung [Cp₂Ti(O-(CH₂CO₂)₂) · 2H₂O]_x in 35% Ausbeute ausgefällt.

Zu Röntgenstrukturuntersuchungen geeignete Kristalle von 1 konnten erhalten werden, indem obige Reaktion bereits nach wenigen Minuten abgebrochen wurde. Zu diesem Zeitpunkt war noch kein Produkt ausgefallen. Die Chloroformphase wurde abgetrennt und mit 10 ml Dichlormethan überschichtet. Das CH_2Cl_2 seinerseits wurde mit 20 ml Hexan/Ether (1/1) überschichtet. Im Kühlschrank bildeten sich innerhalb einiger Stunden rautenförmige Kristalle von 1. Gef.: C, 54.2; H, 4.4. $C_{14}H_{14}O_5Ti$ (310.14) ber.: C, 54.22; H, 4.55%. Die Kristalle sind an der Luft beständig.

Bei längerem Stehen (mehrere Wochen) des wie beschrieben überschichteten Reaktionsgemisches bildeten sich langsam orangerote Kriställchen von 2, während die gelben Kristalle von 1 langsam wieder verschwanden. Meist waren die Kristalle von 2 schlecht ausgebildet. Lediglich in einem Ansatz waren sie gut genug für eine Röntgenstrukturanalyse. Gef.: C, 44.2; H, 3.9. $C_{30}H_{32}Cl_4O_{10}Ti_2$ (790.15) ber.: C, 45.60; H, 4.08%. Die Kristalle verwittern an der Luft.

IR-Spektrum von 1 (KBr): 3080s, 1650vs, 1425sh, 1395vs, 1350s, 1330vs, 1230s, 1100m, 1030s, 925m, 855m, 820s, 710w, 585s cm⁻¹.

	•	•	
	$Cp_2Ti(O(CH_2CO_2)_2)$	$\frac{[Cp_2Ti(O(CH_2CO_2)_2)]_2}{\cdot 2CH_2Cl_2}$	$Cp_2Zr(O(CH_2CO_2)_2)$
	(1)	(2)	(3)
Raumgruppe	Pnma	$P2_1/n$	Pnma
a, Å	15.066(4)	16.211(2)	15.089(2)
b, Å	11.526(2)	13.162(1)	11.599(1)
c, Å	7.407(2)	7.642(1)	7.568(1)
β, °	90	84.99(1)	90
Z	4	2	4
$D_{\rm gem}, {\rm g/cm^3}$	1.60	1.56	1,77
$D_{\rm ber}$, g/cm ³	1.601	1.574	1.777
μ , cm ⁻¹	6.2	8.0	7.4
$\theta_{\rm max}, \circ$	23	24	27
unabh. Refl.	948	2537	1523
benutzte Refl.	656	1803	1240
Kriterium	$F_0 > 4\sigma(F_0)$	$F_0 > 4\sigma(F_0)$	$F_0 > 4\sigma(F_0)$
R	0.102	0.109	0.030
$R_{w}(F)$	0.103	0.098	0.032
max. Restelektr			
dichte e/Å ³	0.75	0.73	0.3
•			

Tabelle 3

Kristalldaten und Angaben zu den Strukturbestimmungen

IR-Spektrum von 2 (KBr): 3100w, 2995w, 1645vs, 1440w, 1385s, 1350m, 1325s, 1270s, 1250sh, 1130s, 1015w, 970w, 925w, 820s, 745s, 660w, 757w cm⁻¹.

Darstellung von $Cp_2 Zr(O(CH_2CO_2)_2)$ (3)

Eine Lösung von 73 mg Cp_2ZrCl_2 (0.25 mmol) in 5 ml CHCl₃ wurde mit einer Lösung von 45 mg Dinatriumoxydiacetat (0.25 mmol) in 5 ml Wasser überschichtet. Über Nacht wuchsen an der Phasengrenzfläche millimetergroße Kristalle von 3.

Tabelle 4

Atom	x	У	Z	U_{eq}
Ti	0.2036(2)	0.25	0.0315(4)	0.025(2)
O(1)	0.1684(5)	0.0792(7)	-0.036(1)	0.049(6)
O(2)	0.0777(7)	-0.0531(9)	-0.152(2)	0.070(8)
C(1)	0.1003(9)	0.046(1)	-0.128(2)	0.047(9)
C(2)	0.0459(8)	0.147(1)	-0.199(2)	0.047(8)
O(3)	0.0916(8)	0.25	-0.160(2)	0.044(8)
C(10)	0.361(1)	0.25	0.063(3)	0.06(1)
C(11)	0.3397(9)	0.152(1)	-0.038(2)	0.047(8)
C(12)	0.3071(8)	0.190(1)	-0.202(2)	0.043(8)
C(15)	0.230(2)	0.25	0.336(5)	0.16(4)
C(16)	0.190(2)	0.164(2)	0.310(3)	0.14(2)
C(17)	0.109(1)	0.188(2)	0.278(3)	0.14(2)

Atomparameter von $Cp_2Ti(O(CH_2CO_2)_2)$ (1)

Tabelle 5

Atomparameter von $[Cp_2Ti(O(CH_2CO_2)_2)]_2 \cdot 2CH_2Cl_2$ (2)

Atom	x	у	Z	U _{eq}
Ti	0.3483(1)	- 0.1220(1)	0.2280(2)	0.025(1)
O(1)	0.3964(5)	0.0017(5)	0.3191(9)	0.036(4)
O(2)	0.3046(5)	0.1107(6)	0.444(1)	0.054(5)
C(1)	0.3760(7)	0.0831(8)	0.405(1)	0.030(6)
C(2)	0.4498(6)	0.1445(7)	0.449(1)	0.029(6)
O(3)	0.4302(5)	0.2385(5)	0.535(1)	0.037(5)
C(3)	0.4042(7)	0.2303(9)	0.719(2)	0.038(7)
C(4)	0.4746(7)	0.2146(8)	0.835(2)	0.034(7)
O(4)	0.5461(4)	0.1948(6)	0.7598(9)	0.036(4)
O(5)	0.4568(5)	0.2217(8)	0.995(1)	0.062(6)
C(10)	0.4004(6)	-0.0671(9)	-0.061(1)	0.034(6)
C(11)	0.3333(8)	-0.0035(9)	-0.006(1)	0.044(7)
C(12)	0.2615(7)	-0.059(1)	0.017(2)	0.041(7)
C(13)	0.2844(7)	-0.1604(9)	-0.030(1)	0.041(7)
C(14)	0.3682(7)	-0.1632(9)	-0.072(1)	0.034(6)
C(15)	0.2812(8)	-0.2658(9)	0.358(2)	0.046(8)
C(16)	0.3264(7)	-0.222(1)	0.489(2)	0.046(8)
C(17)	0.2934(8)	-0.128(1)	0.532(1)	0.045(7)
C(18)	0.2278(7)	-0.1112(9)	0.427(2)	0.041(7)
C(19)	0.2188(7)	-0.195(1)	0.327(2)	0.044(7)
Kristall-Dic	hlormethan			
Cl(1)	0.0470(3)	0.0424(3)	0.2433(7)	0.089(3)
Cl(2)	-0.1099(3)	-0.0640(4)	0.2678(7)	0.092(3)
C(20)	-0.0017(9)	-0.076(1)	0.250(2)	0.07(1)

Atom	x	у	Z	U _{eq}
Zr	0.2096(1)	0.25	0.0477(1)	0.024(1)
O (1)	0.1695(2)	0.0775(2)	-0.0219(3)	0.041(1)
O(2)	0.0788(2)	-0.0524(2)	-0.1405(4)	0.057(2)
C(1)	0.1013(2)	0.0470(3)	-0.1127(4)	0.039(2)
C(2)	0.0488(2)	0.1461(3)	-0.1908(5)	0.046(2)
O(3)	0.0921(2)	0.25	-0.1398(5)	0.038(2)
C(10)	0.3756(3)	0.25	0.0681(6)	0.041(2)
C(11)	0.3529(2)	0.1525(3)	-0.0286(4)	0.039(2)
C(12)	0.3172(2)	0.1898(3)	-0.1934(4)	0.041(2)
C(15)	0.2472(3)	0.25	0.3720(7)	0.054(3)
C(16)	0.1974(3)	0.1549(3)	0.3442(5)	0.053(2)
C(17)	0.1103(2)	0.1894(3)	0.3012(5)	0.051(2)

Tabelle 6 Atomparameter von $Cp_2Zr(O(CH_2CO_2)_2)$ (3)

Ausbeute: 80 mg (90%). Gef.: C, 47.0; H, 4.0. $C_{14}H_{14}O_5Zr$ (353.48) ber.: C, 47.57; H, 3.99%. Die Kristalle sind an der Luft beständig.

IR-Spektrum von 3 (KBr): 3080m, 1665vs, 1425m, 1390s, 1345sh, 1330s, 1235w, 1085m, 1030s, 1005m, 925s, 850s, 820s, 690w, 585s cm⁻¹.

Röntgenkristallographie

Die Röntgenmessungen erfolgten mit Graphit-monochromatisierter Mo- K_{α} -Strahlung (λ 0.71069 Å) auf einem Philips PW1100-Einkristalldiffraktometer. Die Kristalle von 1 und 3 waren auf Glasfäden aufgeklebt, der Kristall von 2 war in eine Glaskapillare eingeschlossen. Die Kristalldaten sind in Tabelle 3 aufgeführt. Die Intensitätsdaten wurden im $\theta/2\theta$ -Modus gemessen. Absorptionskorrekturen wurden nicht angebracht. Die Metallatome wurden mittels Pattersonmethoden lokalisiert. Die übrigen nicht-H-Atome konnten in ΔF -Synthesen lokalisiert werden. Die H-Atome wurden bei den abschliessenden F_c -Berechnungen berücksichtigt, aber nicht verfeinert. Die nicht-H-Atome wurden mit anisotropen Temperaturparametern verfeinert. Die Atomparameter sind in den Tabellen 4–6 zusammengestellt. Benutztes Programmsystem und Formfaktorwerte für Neutralatome sowie deren Korrekturwerte wie in [4]. Weitere Einzelheiten zur Strukturbestimmung können beim Fachinformationszentrum Energie-Physik-Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53386, der Autoren und des Zeitschriftenzitats angefordert werden.

Dank

Diese Untersuchung wurde durch das Land Baden-Württemberg im Rahmen des Schwerpunktprogrammes Strukturforschung sowie den Fonds der Chemischen Industrie gefördert. Hierfür danken wir.

Literatur

- 1 Titan-organische Verbindungen, Teil 2 bis 4, Gmelin Handbuch der Anorganischen Chemie, 1980 bis 1984.
- 2 R. Leik, L. Zsolnai, G. Huttner und E.W. Neuse, J. Organomet. Chem., 312 (1986) 177.
- 3 T. Güthner und U. Thewalt, J. Organomet. Chem., 371 (1989) 43.
- 4 U. Thewalt, S. Klima und K. Berhalter, J. Organomet. Chem., 342 (1988) 303.